Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Virol ; 96(18): e0096222, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2137410

ABSTRACT

Intestinal stem cells (ISCs) play an important role in tissue repair after injury. A recent report delineates the effect of transmissible gastroenteritis virus (TGEV) infection on the small intestine of recovered pigs. However, the mechanism behind the epithelium regeneration upon TGEV infection remains unclear. To address this, we established a TGEV infection model based on the porcine intestinal organoid monolayer. The results illustrated that the porcine intestinal organoid monolayer was susceptible to TGEV. In addition, the TGEV infection initiated the interferon and inflammatory responses following the loss of absorptive enterocytes and goblet cells. However, TGEV infection did not disturb epithelial integrity but induced the proliferation of ISCs. Furthermore, TGEV infection activated the Wnt/ß-catenin pathway by upregulating the accumulation and nuclear translocation of ß-catenin, as well as promoting the expression of Wnt target genes, such as C-myc, Cyclin D1, Mmp7, Lgr5, and Sox9, which were associated with the self-renewal of ISCs. Collectively, these data demonstrated that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. IMPORTANCE The intestinal epithelium is a physical barrier to enteric viruses and commensal bacteria. It plays an essential role in maintaining the balance between the host and intestinal microenvironment. In addition, intestinal stem cells (ISCs) are responsible for tissue repair after injury. Therefore, prompt self-renewal of intestinal epithelium will facilitate the rebuilding of the physical barrier and maintain gut health. In the manuscript, we found that the transmissible gastroenteritis virus (TGEV) infection did not disturb epithelial integrity but induced the proliferation of ISCs and facilitated epithelium regeneration. Detailed mechanism investigations revealed that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. These findings will contribute to understanding the mechanism of intestinal epithelial regeneration and reparation upon viral infection.


Subject(s)
Stem Cells , Transmissible gastroenteritis virus , Animals , Cyclin D1/metabolism , Interferons/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/virology , Matrix Metalloproteinase 7 , Stem Cells/cytology , Stem Cells/virology , Swine , Transmissible gastroenteritis virus/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
2.
Arch Virol ; 167(11): 2249-2262, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2075433

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.


Subject(s)
Deltacoronavirus , Animals , China , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Deltacoronavirus/pathogenicity , Diarrhea/veterinary , Genomics , Phylogeny , Swine , Swine Diseases/virology , Virulence
3.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(5):537-544, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1994651

ABSTRACT

Long noncoding RNA (lncRNA) is a type of non-coding RNA molecule longer than 200 nt, which plays vital roles in biological events. Our previous results demonstrated that the host's lncRNA expression profile was significantly changed after porcine epidemic diarrhea virus (PEDV) infection. In this study, one of the lncRNAs, lncRNA9606, was selected to investigate its impact on PEDV replication. First, the kinetics of lncRNA9606 expression in IPEC-J2 cells were examined at different time points after PEDV infection. The results confirmed that PEDV infection significantly upregulated the expression of lncRNA9606. The lncRNA9606 expression levels in different cells or tissues were evaluated and the results showed that the amount of lncRNA9606 in Peyer's patches and peripheral blood mononuclear cells were significantly higher than that in small intestinal epithelial cell lines. It was mainly localized in the nucleus. Further investigations indicated that over expression of lncRNA in LLC-PK1 cells significantly inhibited PEDV replication. In conclusion, lncRNA9606 can suppress the PEDV replication in LLC-PK1 cells.

SELECTION OF CITATIONS
SEARCH DETAIL